Answer:
v= 10 m/s
Explanation:
Given that
Radius ,r= 20 m
The total wight R
[tex]R=W+\dfrac{W}{2}[/tex] ( 50% heavier)
Lets take ,mass = m kg
[tex]R=mg+\dfrac{mg}{2}[/tex]
Now by applying Newton's Second law
Total Force[tex]F= mg+\dfrac{mv^2}{r}[/tex]
v=speed of the car at the bottom
Now by balancing the above forces
[tex]mg+\dfrac{mg}{2}= mg+\dfrac{mv^2}{r}[/tex]
[tex]\dfrac{mg}{2}= \dfrac{mv^2}{r}[/tex]
[tex]\dfrac{g}{2}= \dfrac{v^2}{r}[/tex]
[tex]v=\sqrt{\dfrac{gr}{2}}[/tex]
[tex]v=\sqrt{\dfrac{10\times 20}{2}}\ m/s[/tex] ( take g= 10 m/s²)
v= 10 m/s
Answer:
Explanation:
Force = weight + 50% of weight = 1.5 mg
Weight = mg
Let v be the speed.
radius, r = 20 m
According to the Newtons second law
F = mg + mv²/r
1.5 mg = mg + mv²/r
0.5 g = v²/r
v² = 0.5 x 9.8 x 20
v = 9.8 m/s