Answer: r ≈ 5.95
Step-by-step explanation:
Let S be the surface area , then
S = [tex]\pi[/tex][tex]r^{2}[/tex] + [tex]\pi[/tex]r[tex]\sqrt{r^{2}+h^{2}}[/tex]
Differentiating S with respect to r , we have
dS = [tex]\frac{dS}{dr}[/tex] dr + [tex]\frac{dS}{dh}[/tex] dh
[tex]\frac{dS}{dr}[/tex] = (2[tex]\pi[/tex]r +[tex]\pi[/tex][tex]\sqrt{h^{2}+r^{2}}[/tex] + [tex]\frac{\pi r^{2} }{\sqrt{h^{2}+r^{2}} }[/tex]) dr + [tex]\frac{\pi rh }{h^{2}+r^{2} }[/tex] dh
For the area to remain the same it means dS = 0
since r = 6cm , h = 8cm , dh = 0.28 then we have
0 = (12π + 10π +[tex]\frac{18\pi }{5}[/tex])dr + [tex]\frac{24\pi }{5}[/tex] X 0.28.
Making dr the subject of formula , we have
(12π + 10π +[tex]\frac{18\pi }{5}[/tex])dr = - ([tex]\frac{24\pi }{5}[/tex] X 0.28)
([tex]\frac{128\pi }{5}[/tex]) dr = - [tex]\frac{6.72\pi }{5}[/tex]
(640[tex]\pi[/tex])dr = - 33.6[tex]\pi[/tex]
dr = - 33.6[tex]\pi[/tex] / 640[tex]\pi[/tex]
dr = 0.05
This means that the radius should decrease by 0.05 for the area to remain the same. That means the radius = 6 - 0.05
r ≈ 5.95