Answer:
Therefore the Minimum value of f(x) is 2.
Step-by-step explanation:
Given:
[tex]f(x)=x^{2} + 6x+11[/tex]
To Find:
minimum or maximum value of f(x)
Solution:
To find minimum or maximum value of f(x)
Step 1 . Find f'(x) and f"(x)
[tex]f(x)=x^{2} + 6x+11[/tex]
Applying Derivative on both the side we get
[tex]f'(x)=\dfrac{d(x^{2})}{dx}+\dfrac{d(6x)}{dx}+\dfrac{d(11)}{dx}[/tex]
[tex]f'(x)=2x+6+0[/tex]
Again Applying Derivative on both the side we get
[tex]f''(x)=\dfrac{d(2x)}{dx}+\dfrac{d(6)}{dx}[/tex]
[tex]f''(x)=2[/tex]
Step 2. For Maximum or Minimum f'(x) = 0 to find 'x'
[tex]2x+6=0\\\\2x=-6\\\\x=\dfrac{-6}{2}=-3[/tex]
Step 3. IF f"(x) > 0 then f(x) is f(x) is Minimum at x
IFf"(x) < 0 then f(x) is f(x) is Maximum at x
Step 4. We have
[tex]f''(x)=2[/tex]
Which is grater than zero
then f(x) is Minimum at x= -3
Therefore the Minimum value of f(x) is 2.