Respuesta :

Answer:

Therefore the Minimum value of f(x) is 2.

Step-by-step explanation:

Given:

[tex]f(x)=x^{2} + 6x+11[/tex]

To Find:

minimum or maximum value of f(x)

Solution:

To find minimum or maximum value of f(x)

Step 1 . Find f'(x) and f"(x)

[tex]f(x)=x^{2} + 6x+11[/tex]

Applying Derivative on both the side we get

[tex]f'(x)=\dfrac{d(x^{2})}{dx}+\dfrac{d(6x)}{dx}+\dfrac{d(11)}{dx}[/tex]

[tex]f'(x)=2x+6+0[/tex]

Again Applying Derivative on both the side we get

[tex]f''(x)=\dfrac{d(2x)}{dx}+\dfrac{d(6)}{dx}[/tex]

[tex]f''(x)=2[/tex]

Step 2. For Maximum or Minimum f'(x) = 0 to find 'x'

[tex]2x+6=0\\\\2x=-6\\\\x=\dfrac{-6}{2}=-3[/tex]

Step 3. IF f"(x) > 0 then f(x) is f(x) is Minimum at x

            IFf"(x) < 0 then f(x) is f(x) is Maximum at x

Step 4. We have

[tex]f''(x)=2[/tex]

Which is grater than zero

then f(x) is Minimum at x= -3

Therefore the Minimum value of f(x) is 2.

ACCESS MORE