Respuesta :
Answer:
Option D
Explanation:
The exponential equation to determine the age of any radioactive object is as follows -
[tex]t = [\frac{ln\frac{N}{N_{0} } }{-0.693} ]* t_{\frac{1}{2} }[/tex]
where
[tex]N =[/tex] Final quantity of isotope after degradation
[tex]N_{0} =[/tex] initial quantity of isotope
[tex]t_{\frac{1}{2} } =[/tex] half life period of isotope
[tex]t =[/tex] time period of degradation
Substituting the given values in above equation we get -
[tex]4.6 = [\frac{ln\frac{N}{N_{0} } }{-0.693} ]* 1.25\\ln\frac{N}{N_{0}} = 2.550\\\frac{N}{N_{0}} = 12.81\\[/tex]
[tex]\frac{N_{0}}{N} = \frac{1}{12.81} \\0.07[/tex]
Remaining isotope
[tex]= 1 -0.07\\= 0.93[/tex]
Hence, option D is correct.