Answer: [tex](3.75,\ 5.45)[/tex]
Step-by-step explanation:
Given : Sample size of children : n= 20
Degree of freedom = df =n-1 =20-1=19
Sample mean years of piano lessons : [tex]\overline{x}=4.6[/tex]
Sample standard deviation : [tex]s= 2.2[/tex]
Confidence level : [tex]1-\alpha= 0.90[/tex]
Significance level : [tex]\alpha= 1-0.90=0.10[/tex]
Since population standard deviation is unavailable, then
Confidence interval for the population mean :
[tex]\overline{x}\pm t_{\alpha/2, df}\dfrac{s}{\sqrt{n}}[/tex] (1)
Using t-distribution table , we have
Critical value = [tex]t_{\alpha/2, df}=t_{0.05 , 19}=\pm1.7291[/tex]
The 90% confidence interval for the average number of years students take piano lessons in this city will be :
[tex]4.6\pm (1.7291)\dfrac{2.2}{\sqrt{20}}[/tex] (Substitute the values in (1))
[tex]4.6\pm (1.7291)(0.491935)[/tex]
[tex]\approx4.6\pm 0.85[/tex]
[tex](4.6- 0.85,\ 4.6+ 0.85)[/tex]
[tex](3.75,\ 5.45)[/tex]
Hence, the 90% confidence interval for the average number of years students take piano lessons in this city =[tex](3.75,\ 5.45)[/tex]