Respuesta :
Answer:
122.22 W/m²
Explanation:
Let the intensity of unpolarized light is Io.
from first polariser
I' = Io/2
From second polariser
I'' = I' Cos²30 = 3 Io/8
From third polariser
I''' = I'' Cos²30 = 9Io/32
According to the question
9Io/32 = 275
Io = 977.78 watt/m²
Now, from first polariser
I' = Io/2 = 977.78 / 2 = 488.89 W/m²
I'' = 488.89 x cos²60 = 122.22 W/m²
thus, the intensity of light is 122.22 W/m².
Answer:
Explanation:
Given
Intensity of light emerging out is [tex]I=275 W/m^2[/tex]
Polarizer axis are inclined at [tex]30^{\circ}] , [tex]60^{\circ}[/tex] , [tex]90^{\circ}[/tex]
If [tex]I_0[/tex] is the Intensity of Incoming light then
[tex]275=\frac{I_0}{2}\times \cos ^2{30}\times \cos^2 {30}[/tex]
as they are inclined to [tex]30^{\circ}[/tex]to each other
[tex]I_0=\frac{275}{9}\times 32[/tex]
[tex]I_0=977.77 W/m^2[/tex]
If middle Filter is removed then
[tex]I=0.5\cdot I_0\cos ^2{60}[/tex]
[tex]I=0.5\cdot 977.77\cdot \frac{1}{4}[/tex]
[tex]I=122.22 W/m^2[/tex]