Respuesta :

Answer:

8.987 (Approximate)

Step-by-step explanation:

We have to find the sum of a G.P. series up to sixth terms.

The first term of the series is 6 and common ratio is [tex]\frac{1}{3}[/tex].

So, the sum is  

[tex]6 + 2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \frac{2}{81}[/tex]

= [tex]6 \times \frac{1 - (\frac{1}{3})^{6}}{1 - \frac{1}{3} }[/tex]

= 8.987 (Approximate) (Answer)

We know the sum of a G.P.

a + ar + ar² + ar³ + ......... up to n terms = [tex]a\frac{1 - r^{n}}{1 - r}[/tex]  

where -1 < r < 1.

ACCESS MORE