Respuesta :
Answer:
a)For this case the best estimator for the true mean is the sample mean [tex]\hat \mu =\bar X[/tex] because:
[tex]E(\bar X)= \frac{\sum_{i=1}^n E(X_i)}{n}[/tex]
And if we assume that each observation [tex]X_1 , X_2,...,X_n [/tex] follows a normal distribution [tex]X_i \sim N(\mu,\sigma)[/tex] then we have:
[tex]E(\bar X)=\frac{1}{n} n\mu =\mu[/tex]
So then yes the [tex]\bar X[/tex[ is a unbiased estimator for the true mean.
b) [tex]z_{\alpha/2}=1.96[/tex]
c) [tex] ME= 1.96 \frac{0.4}{\sqrt{50}}=0.1109[/tex]
Step-by-step explanation:
Previous concepts
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
[tex]\bar X=4.1[/tex] represent the sample mean
[tex]\mu[/tex] population mean (variable of interest)
[tex]\sigma=0.4[/tex] represent the population standard deviation
n=50 represent the sample size
Assuming the X follows a normal distribution
[tex]X \sim N(\mu, \sigma=0.4[/tex]
The sample mean [tex]\bar X[/tex] is distributed on this way:
[tex]\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]
A. What is the point estimate in this scenario? Is it an unbiased estimator?
For this case the best estimator for the true mean is the sample mean [tex]\hat \mu =\bar X[/tex] because:
[tex]E(\bar X)= \frac{\sum_{i=1}^n E(X_i)}{n}[/tex]
And if we assume that each observation [tex]X_1 , X_2,...,X_n [/tex] follows a normal distribution [tex]X_i \sim N(\mu,\sigma)[/tex] then we have:
[tex]E(\bar X)=\frac{1}{n} n\mu =\mu[/tex]
So then yes the [tex]\bar X[/tex[ is a unbiased estimator for the true mean.
B. What is the critical z-value for a 95% interval?
The next step would be find the value of [tex]\z_{\alpha/2}[/tex], [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2=0.025[/tex]
Using the normal standard table, excel or a calculator we see that:
[tex]z_{\alpha/2}=1.96[/tex]
C. What is the margin of error for a 95% interval in this scenario? Show your work.
The margin of error is given by:
[tex] ME= z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]
If we replace the values that we have we got:
[tex] ME= 1.96 \frac{0.4}{\sqrt{50}}=0.1109[/tex]
The confidence interval on this case is given by:
[tex]\bar X \pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex] (1)
Since we have all the values we can replace:
[tex]4.1 - 1.96\frac{0.4}{\sqrt{50}}=3.989[/tex]
[tex]4.1 + 1.96\frac{0.4}{\sqrt{50}}=4.211[/tex]
So on this case the 95% confidence interval would be given by (3.989;4.211)