Answer:
The number of years in which saving gets double is 8 years .
Step-by-step explanation:
Given as :
The principal amount saved into the account = p = $8,000
The rate of interest applied = r = 9%
The Amount gets double in n years = $A
Or, $A = 2 × p = $8,000 × 2 = $16,000
Let the number of years in which saving gets double = n years
Now, From Compound Interest method
Amount = Principal × [tex](1+\dfrac{\textrm rate}{100})^{\textrm time}[/tex]
Or, 2 × p = p × [tex](1+\dfrac{\textrm r}{100})^{\textrm n}[/tex]
Or, $16,000 = $8,000 × [tex](1+\dfrac{\textrm 9}{100})^{\textrm n}[/tex]
Or, [tex]\dfrac{16,000}{8,000}[/tex] = [tex](1.09)^{n}[/tex]
Or, 2 = [tex](1.09)^{n}[/tex]
Now, Taking Log both side
[tex]Log_{10}[/tex]2 = [tex]Log_{10}[/tex] [tex](1.09)^{n}[/tex]
Or, 0.3010 = n × [tex]Log_{10}[/tex]1.09
Or, 0.3010 = n × 0.0374
∴ n = [tex]\dfrac{0.3010}{0.0374}[/tex]
I.e n = 8.04 ≈ 8
So, The number of years = n = 8
Hence, The number of years in which saving gets double is 8 years . Answer