Answer:
[tex]2\times 10^{-3}\ C[/tex]
6000
1.2 J
[tex]3.33\times 10^{-6}\ F[/tex]
Explanation:
I = Current = 1 A
t = Time = 2 ms
n = Number of electrocyte
V = Voltage = 100 mV
Charge is given by
[tex]Q=It\\\Rightarrow Q=1\times 2\times 10^{-3}\\\Rightarrow Q=2\times 10^{-3}\ C[/tex]
The charge flowing through the electrocytes in that amount of time is [tex]2\times 10^{-3}\ C[/tex]
The maximum potential is given by
[tex]V_m=nV\\\Rightarrow n=\dfrac{V_m}{V}\\\Rightarrow n=\dfrac{600}{100\times 10^{-3}}\\\Rightarrow n=6000[/tex]
The number of electrolytes is 6000
Energy is given by
[tex]E=Pt\\\Rightarrow E=V_mIt\\\Rightarrow E=600\times 1\times 2\times 10^{-3}\\\Rightarrow E=1.2\ J[/tex]
The energy released when the electric eel delivers a shock is 1.2 J
Equivalent capacitance is given by
[tex]C_e=\dfrac{Q}{V_m}\\\Rightarrow C_e=\dfrac{2\times 10^{-3}}{600}\\\Rightarrow C_e=3.33\times 10^{-6}\ F[/tex]
The equivalent capacitance of all the electrocyte cells in the electric eel is [tex]3.33\times 10^{-6}\ F[/tex]