Respuesta :
The midpoint of AB where [tex]A(x_A;\ y_A)[/tex] and [tex]B(x_B;\ y_B)[/tex]
[tex]\left(\dfrac{x_A+x_B}{2};\ \dfrac{y_A+y_B}{2}\right)[/tex]
[tex]A(7;\ 5);\ B(7;\ 11)[/tex]
The midpoint of AB: [tex]\left(\dfrac{7+7}{2};\ \dfrac{5+11}{2}\right)=\left(\dfrac{14}{2};\ \dfrac{16}{2}\right)=(7;\ 8)[/tex]
Answer: (7, 8)
[tex]\left(\dfrac{x_A+x_B}{2};\ \dfrac{y_A+y_B}{2}\right)[/tex]
[tex]A(7;\ 5);\ B(7;\ 11)[/tex]
The midpoint of AB: [tex]\left(\dfrac{7+7}{2};\ \dfrac{5+11}{2}\right)=\left(\dfrac{14}{2};\ \dfrac{16}{2}\right)=(7;\ 8)[/tex]
Answer: (7, 8)
The midpoint of two points can be obtained by taking the average between the two abscissas or two ordinates. In this case ,the x-value of the midpoint is equal to (7+7)/2 equal to 7 while the y-value of the midpoint is equalto (5+11)/2 equal to 8. Hence the midpoint is t (7,8)