Respuesta :
Answer:
It will take the fireworks [tex]1\dfrac{7}{8}[/tex] seconds to reach its maximum height.
The maximum height that the firework will reach is [tex]56\dfrac{1}{4}[/tex] feet.
The fireworks will hit the ground in [tex]3\dfrac{3}{4}[/tex] seconds.
Step-by-step explanation:
A firework is launched upward from the ground at an initial velocity of 60 feet per second. The function describing this situation is
[tex]h = -16t^2 + 60t[/tex]
1. Find t-coordinate of the vertex of the parabola:
[tex]t_v\\ \\=\dfrac{-b}{2a}\\ \\=\dfrac{-60}{2\cdot (-16)}\\ \\=\dfrac{15}{8}\ seconds[/tex]
It will take the fireworks [tex]\dfrac{15}{8}=1\dfrac{7}{8}[/tex] seconds to reach its maximum height.
2. Find h-coordinate of the vertex of the parabola:
[tex]h(t_v)\\ \\=-16\cdot \left(\dfrac{15}{8}\right)^2+60\cdot \left(\dfrac{15}{8}\right)\ \\=-16\cdot \dfrac{225}{64}+\dfrac{30\cdot 15}{4}\\ \\=\dfrac{-225+450}{4}\\ \\=\dfrac{225}{4}\\ \\=56\dfrac{1}{4}\ ft[/tex]
The maximum height that the firework will reach is [tex]56\dfrac{1}{4}[/tex] feet.
3. The fireworks will hit the ground when h = 0:
[tex]-16t^2+60t=0\\ \\4t(-4t+15)=0\\ \\t=0\ \text{or}\ -4t+15=0\\ \\t=0\ \text{or}\ t=\dfrac{15}{4}\ seconds[/tex]
The fireworks will hit the ground in [tex]\dfrac{15}{4}=3\dfrac{3}{4}[/tex] seconds.