Respuesta :
Answer:
a) [tex]\mu_1 -\mu_2[/tex] parameter of interest.
Where [tex]\mu_1[/tex] represent the mean response for adults
[tex]\mu_2[/tex] represent the mean response for teenegers
b) The best estimate is given by [tex]\bar X_1 -\bar X_2[/tex]
Since the best estimator for the true mean is the sample mean [tex]\hat \mu = \bar X[/tex]
c) The best estimate is given by [tex]\bar X_1 -\bar X_2 =0.225-0.059=0.166[/tex]
d) The 95% confidence interval would be given by [tex]-0.012 \leq \mu_1 -\mu_2 \leq 0.344[/tex]
Step-by-step explanation:
Previous concepts
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
Let group 1 be adults and group 2 be teenagers.
[tex]\bar X_1 =0.225[/tex] represent the sample mean 1
[tex]\bar X_2 =0.059[/tex] represent the sample mean 2
n1 represent the sample 1 size
n2 represent the sample 2 size
[tex]s_1 [/tex] sample standard deviation for sample 1
[tex]s_2 [/tex] sample standard deviation for sample 2
SE =0.091 represent the standard error for the estimate
(a) Give notation for the quantity that is being estimated.
[tex]\mu_1 -\mu_2[/tex] parameter of interest.
(b) Give notation for the quantity that gives the best estimate.
[tex]\mu_1 -\mu_2[/tex] parameter of interest.
The best estimate is given by [tex]\bar X_1 -\bar X_2[/tex]
Since the best estimator for the true mean is the sample mean [tex]\hat \mu = \bar X[/tex]
(c) Give the value for the quantity that gives the best estimate.
The best estimate is given by [tex]\bar X_1 -\bar X_2 =0.225-0.059=0.166[/tex]
(d) Give a confidence interval for the quantity being estimated. Assuming 95% of confidence
The confidence interval for the difference of means is given by the following formula:
[tex](\bar X_1 -\bar X_2) \pm t_{\alpha/2}\sqrt{\frac{s^2_1}{n_1}+\frac{s^2_2}{n_2}}[/tex] (1)
The point of estimate for [tex]\mu_1 -\mu_2[/tex] is just given by:
[tex]\bar X_1 -\bar X_2 =0.225-0.059=0.166[/tex]
We can assume that since we know the standard error the deviations are known and we can use the z distribution instead of the t distribution for the confidence interval.
Since the Confidence is 0.95 or 95%, the value of [tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and we can use excel, a calculator or a table to find the critical value. The excel command would be: "=-NORM.INV(0.025,0,1)".And we see that [tex]z_{\alpha/2}=1.96[/tex]
The standard error is given by the following formula:
[tex]SE=\sqrt{\frac{s^2_1}{n_1}+\frac{s^2_2}{n_2}}=0.091[/tex]
Given by the problem
Now we have everything in order to replace into formula (1):
[tex]0.166-1.96(0.091)=-0.012[/tex]
[tex]0.166+1.96(0.091)=0.344[/tex]
So on this case the 95% confidence interval would be given by [tex]-0.012 \leq \mu_1 -\mu_2 \leq 0.344[/tex]