Respuesta :
Answer
The answer and procedures of the exercise are attached in the following archives.
Step-by-step explanation:
You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.
![Ver imagen cancinodavidq](https://us-static.z-dn.net/files/d37/0aa33679466527be8aced09046c9aa61.png)
Answer:
Fy = -11267.294 lbf
Explanation:
given data
nozzle flow = 30 degrees
discharges the water = 20 degrees C
volume of water = 100 lb
Area of flange = 1.0 ft²
Area of nozzle = 0.50 ft²
Volume of area flange = 1.8 ft³
Vertical height flange to nozzle = 2 ft
solution
we will apply here continuity equation that is
A1 × V1 = A2 × V2 .............1
put here value and we get volume V1 that is
V1 = [tex]\frac{0.5\times 125}{1}[/tex]
V1 = 62.5 ft/s
and
now we will apply here Bernoulli equation that is
[tex]\frac{p1}{\gamma 1} + \frac{V1^2}{2g} + z1 = \frac{p2}{\gamma 2} + \frac{V2^2}{2g} + z2[/tex] .............................2
put here value and we will get
p1 = 0 + [tex]\frac{62.4}{2\times 32.2}(125^2 - 62.5^2) + 62.4 (2)[/tex]
p1 = 11479.614 psf
so here moment in y will be
∑ Fy = m [ (Vo)y - (Vi)x ]
so here we get
p1 ×A1 + Fy - Wn - Ww = [tex]\rho[/tex] Q [ V2 × sin30 - V1 ]
put here value and we get Fy
1147.614 × 1 + Fy - 100 - (62.4 × 1.8) = (1.94) × (0.5 ×130) × (125sin30 - 62.5)
solve it we get
Fy = -11267.294 lbf
![Ver imagen DeniceSandidge](https://us-static.z-dn.net/files/d2a/3d32f7f9c1e97ae3f8b50e6dafa5d828.png)