Question:
Set up a right triangle model for this problem and solve by using a calculator. Follow the models above,
A photographer stands 60 yards from the base of a lighthouse and observes that the angle between the ground and the top of the lighthouse is 41° How tall is the lighthouse?
Answer:
The height of lighthouse is 52.2 yards
Solution:
Given that photographer stands 60 yards from the base of a lighthouse and observes that the angle between the ground and the top of the lighthouse is 41 degree
The diagram is attached below
Consider a right angled triangle ABC
AB is the height of the lighthouse
BC is the distance between the base of a lighthouse and Photographer
As per given, BC = 60 yards
Angle between the ground and the top of the lighthouse is 41 degree
Angle ACB = 41 degree
To find: height of lighthouse i.e AB = ?
We know that,
[tex]tan(\angle ACB) = \frac{Perpendicular}{Base}[/tex]
Here Base is BC and perpendicular is AB
[tex]\tan 41^{\circ}=\frac{A B}{B C}[/tex]
Substituting the values,
[tex]\begin{aligned}&\tan 41^{\circ}=\frac{A B}{60}\\\\&0.8692=\frac{A B}{60}\\\\&A B=0.8692 \times 60=52.157 \approx 52.2\end{aligned}[/tex]
Thus the height of lighthouse is 52.2 yards