Answer:
[tex]\cos\theta=\pm0.5[/tex]
Step-by-step explanation:
Given:
[tex]\sin^2\theta=0.75[/tex]
To find [tex]\cos\theta[/tex]
Using trigonometric relations for sums and differences of squares of the ratios.
We know:
[tex]\sin^2\theta+\cos^2\theta =1[/tex]
Plugging in [tex]\sin^2\theta=0.75[/tex] in the above relation.
[tex]0.75+\cos^2\theta =1[/tex]
Subtracting both sides by 0.75.
[tex]0.75+\cos^2\theta-0.75 =1-0.75[/tex]
[tex]\cos^2\theta =0.25[/tex]
Taking square root both sides.
[tex]\sqrt{\cos^2\theta} =\sqrt{0.25}[/tex]
∴ [tex]\cos\theta=\pm0.5[/tex] (Answer)