Respuesta :

Answer:

[tex]\cos\theta=\pm0.5[/tex]

Step-by-step explanation:

Given:

[tex]\sin^2\theta=0.75[/tex]

To find [tex]\cos\theta[/tex]

Using trigonometric relations for sums and differences of squares of the ratios.

We know:

[tex]\sin^2\theta+\cos^2\theta =1[/tex]

Plugging in  [tex]\sin^2\theta=0.75[/tex] in the above relation.

[tex]0.75+\cos^2\theta =1[/tex]

Subtracting both sides by 0.75.

[tex]0.75+\cos^2\theta-0.75 =1-0.75[/tex]

[tex]\cos^2\theta =0.25[/tex]

Taking square root both sides.

[tex]\sqrt{\cos^2\theta} =\sqrt{0.25}[/tex]

∴ [tex]\cos\theta=\pm0.5[/tex]  (Answer)

ACCESS MORE