Respuesta :
Answer:
1.81779 m/s in the same direction as the car
0.43220 m/s in the same direction
Explanation:
[tex]m_1[/tex] = Mass of van= 1055 kg
[tex]m_2[/tex] = Mass of car = 715 kg
[tex]u_1[/tex] = Initial Velocity of van = 0 m/s
[tex]u_2[/tex] = Initial Velocity of car = 2.25 m/s
[tex]v_1[/tex] = Final Velocity of van
[tex]v_2[/tex] = Final Velocity of car
As momentum and Energy is conserved
[tex]m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}[/tex]
[tex]{\tfrac {1}{2}}m_{1}u_{1}^{2}+{\tfrac {1}{2}}m_{2}u_{2}^{2}={\tfrac {1}{2}}m_{1}v_{1}^{2}+{\tfrac {1}{2}}m_{2}v_{2}^{2}[/tex]
From the two equations we get
[tex]v_{1}=\dfrac{m_1-m_2}{m_1+m_2}u_{1}+\dfrac{2m_2}{m_1+m_2}u_2\\\Rightarrow v_1=\dfrac{1055-715}{1055+715}\times 0+\dfrac{2\times 715}{1055+715}\times 2.25\\\Rightarrow v_1=1.81779\ m/s[/tex]
The final velocity of the van is 1.81779 m/s in the same direction as the car
[tex]v_{2}=\dfrac{2m_1}{m_1+m_2}u_{1}+\dfrac{m_2-m_1}{m_1+m_2}u_2\\\Rightarrow v_2=\dfrac{2\times 1055}{1055+715}\times 0+\dfrac{1055-715}{1055+715}\times 2.25\\\Rightarrow v_2=0.43220\ m/s[/tex]
The final velocity of the car is 0.43220 m/s in the same direction
Answer:
(a). The final velocity of the car is -0.432 m/s.
(b). The final velocity of the van is 1.82 m/s.
Explanation:
Given that,
Mass of van = 1055 kg
Mass of car = 715 kg
Initial velocity of car= 2.25 m/s
(a). We need to calculate the final velocity of the car
Using formula of velocity
[tex]v_{c}=\dfrac{m_{v}-m_{c}}{m_{v}+m_{c}}\times u_{c}[/tex]
Put the value into the formula
[tex]v_{c}=\dfrac{715-1055}{715+1055}\times2.25[/tex]
[tex]v_{c}=-0.432\ m/s[/tex]
(b). We need to calculate the final velocity of the van
Using formula of velocity
[tex]v_{v}=\dfrac{2m_{v}}{m_{v}+m_{c}}\times u_{c}[/tex]
Put the value into the formula
[tex]v_{v}=\dfrac{2\times715}{715+1055}\times2.25[/tex]
[tex]v_{v}=1.82\ m/s[/tex]
Hence, (a). The final velocity of the car is -0.432 m/s.
(b). The final velocity of the van is 1.82 m/s.