calculate "de Broglie" wavelength for each of the following, and use your numerical answers the to explain why macroscopic (large) objects are not ordinarily discussed in terms of their "wave-like" properties. a. an electron moving at .90 times the speed of light.
b. a 150-g ball moving at a speed of 10.m/s​

Respuesta :

Answer:

a. [tex]2.69 pm[/tex]

b. [tex]4.42\cdot 10^{-34} m[/tex]

Explanation:

The de Broglie wavelength can be found by the following equation:

[tex]\lambda_{dB} = \frac{h}{mv}[/tex]

Here:

[tex]\lambda_{dB}[/tex] is the de Broglie wavelength (in m);

[tex]h[/tex] is the Planck's constant, [tex]h = 6.626\cdot 10^{-34} J\cdot s[/tex];

[tex]m[/tex] is mass (in kg);

[tex]v[tex] is velocity (in m/s).

a. We need to know the mass of an electron here:

[tex]m_e=9.11\cdot10^{-31} kg[/tex]

And the speed of light:

[tex]c = 3.00\cdot 10^8 m/s[/tex]

The fraction of the speed of light is:

[tex]\omega = 0.90[/tex]

Substituting into the equation:

[tex]\lambda_{dB} = \frac{h}{\omega c m_e}=\frac{6.626\cdot10^{-34} J\cdot s}{0.90\cdot 9.11\cdot 10^{-31} kg\cdot 3.00\cdot 10^8 m/s} = 2.69\cdot 10^{-12} m = 2.69 pm[/tex]

b. Similarly, here we have:

[tex]m_b=150 g = 0.150 kg[/tex]

And the velocity of:

[tex]v = 10 m/s[/tex]

We obtain:

[tex]\lambda_{dB}={6.626\cdot 10^{-34} J\cdot s}{0.150 kg\cdot 10 m/s} = 4.42\cdot 10^{-34} m[/tex]

Notice that the wavelength of a large object is smaller by a fraction of:

[tex]\frac{2.69\cdot 10^{-12} m}{4.42\cdot 10^{-34} m} = 6\cdot 10^{21}[/tex]

This means the de Broglie wavelength of a macroscopic object is negligible compared to the wavelength of a microscopic object.