Respuesta :
Answer:
a. [tex]2.69 pm[/tex]
b. [tex]4.42\cdot 10^{-34} m[/tex]
Explanation:
The de Broglie wavelength can be found by the following equation:
[tex]\lambda_{dB} = \frac{h}{mv}[/tex]
Here:
[tex]\lambda_{dB}[/tex] is the de Broglie wavelength (in m);
[tex]h[/tex] is the Planck's constant, [tex]h = 6.626\cdot 10^{-34} J\cdot s[/tex];
[tex]m[/tex] is mass (in kg);
[tex]v[tex] is velocity (in m/s).
a. We need to know the mass of an electron here:
[tex]m_e=9.11\cdot10^{-31} kg[/tex]
And the speed of light:
[tex]c = 3.00\cdot 10^8 m/s[/tex]
The fraction of the speed of light is:
[tex]\omega = 0.90[/tex]
Substituting into the equation:
[tex]\lambda_{dB} = \frac{h}{\omega c m_e}=\frac{6.626\cdot10^{-34} J\cdot s}{0.90\cdot 9.11\cdot 10^{-31} kg\cdot 3.00\cdot 10^8 m/s} = 2.69\cdot 10^{-12} m = 2.69 pm[/tex]
b. Similarly, here we have:
[tex]m_b=150 g = 0.150 kg[/tex]
And the velocity of:
[tex]v = 10 m/s[/tex]
We obtain:
[tex]\lambda_{dB}={6.626\cdot 10^{-34} J\cdot s}{0.150 kg\cdot 10 m/s} = 4.42\cdot 10^{-34} m[/tex]
Notice that the wavelength of a large object is smaller by a fraction of:
[tex]\frac{2.69\cdot 10^{-12} m}{4.42\cdot 10^{-34} m} = 6\cdot 10^{21}[/tex]
This means the de Broglie wavelength of a macroscopic object is negligible compared to the wavelength of a microscopic object.