Answer:
[tex]Part I: Measure of angle A=100°[/tex]
[tex]Part II: Length of side a using sines law=29.56[/tex]
[tex]Part III: Length of side a using sines law=24.21[/tex]
Step-by-step explanation:
Given:-
[tex]∠B = 45°[/tex]
[tex]∠C = 35°[/tex]
[tex]Length of side AB = 17[/tex]
Solution:-
1] To find Measure of ∠A=?
Solution:-
[tex]Sum of angle of triangle = 180°[/tex]
[tex]i.e. ∠A+∠B+∠C=180°[/tex]
[tex]∠A+45+35=180[/tex]
[tex]∠A=180-45-35[/tex]
[tex]∠A=100°[/tex]
2] To find length of side a using sines law
Solution:-
[tex]sines C = \frac{opposite}{hypotenuse}[/tex]
[tex]sines C= \frac{length AB}{a}[/tex]
[tex]sines C=\frac{17}{side a}[/tex]
[tex]side a=\frac{17}{sines C}[/tex]
[tex]side a=\frac{17}{0.575}[/tex]
[tex]side a=29.56[/tex] ------------------------------ (equation 1)
3] To find length of side b using cosines law
Solution:-
[tex]cosines C=\frac{adjacent}{hypotenuse}[/tex]
[tex]cosines C=\frac{lengthAC}{hypotenuse}[/tex]
[tex]cosines 35=\frac{b}{29.56}[/tex] ----------------------------(from equation )
[tex]b=cosines 35\ times 29.56[/tex]
[tex]b=0.819\times 29.56[/tex]
[tex]b=24.21[/tex]