Respuesta :
for it to be a solution, it has to satisfy both inequalities...
subbing in (-4,-1)
2x + y < -5 -x + y > 0
2(-4) - 1 < - 5 -(-4) - 1 > 0
-8 - 1 < -5 4 - 1 > 0
-9 < -5.....true 3 > 0....true
solution is (-4,-1)
subbing in (-4,-1)
2x + y < -5 -x + y > 0
2(-4) - 1 < - 5 -(-4) - 1 > 0
-8 - 1 < -5 4 - 1 > 0
-9 < -5.....true 3 > 0....true
solution is (-4,-1)
Answer:
(-4,-1) satisfies the given system of inequalities
Step-by-step explanation:
[tex]2x+y<-5[/tex]
[tex]-x+y>0[/tex]
To find out the solution we check with each option
(4,1) , x=4 and y=1 (Plug in x and y values in the given inequalities)
[tex]2(4)+1<-5[/tex]
[tex]9<-5[/tex] False
(-4,-1) , x=-4 and y=-1 (Plug in x and y values in the given inequalities)
[tex]2(-4)-1<-5[/tex]
[tex]-9<-5[/tex] True
Now plug it in second inequality
[tex]-(-4)-1>0[/tex]
[tex]3>0[/tex] True
(-8,-21) , x=-8 and y=-21 (Plug in x and y values in the given inequalities)
[tex]2(-8)-21<-5[/tex]
[tex]-37<-5[/tex] True
Now plug it in second inequality
[tex]-(-8)-21>0[/tex]
[tex]-13>0[/tex] False
(8,11) , x=8 and y=-11(Plug in x and y values in the given inequalities)
[tex]2(8)+11<-5[/tex]
[tex]-9<-5[/tex] false