Respuesta :

Answer:

[tex]12\sqrt{2}\ cm[/tex]

Step-by-step explanation:

step 1

Find the length side of the square

we know that

The area of a square is equal to

[tex]A=b^{2}[/tex]

where

b is the length side

we have

[tex]A=144\ cm^2[/tex]

substitute in the formula of area

[tex]144=b^{2}[/tex]

solve for b

square root both sides

[tex]b=12\ cm[/tex]

step 2

Find the length of the diagonal

Applying the Pythagorean Theorem

[tex]d^2=b^2+b^2[/tex]

see the attached figure to better understand the problem

substitute the given values

[tex]d^2=12^2+12^2[/tex]

[tex]d^2=288[/tex]

square root both sides

[tex]d=\sqrt{288}\ cm[/tex]

simplify

[tex]d=12\sqrt{2}\ cm[/tex]

Ver imagen calculista
ACCESS MORE