Answer with Explanation:
We are given that
Momentum of photon=[tex]8.3\times 10^{-28} kg.m/s[/tex]
a. We have to find the energy of this photon.
Speed of photon=[tex]c=3\times 10^8 m/s[/tex]
We know that
Momentum=p=[tex]\frac{h}{\lambda}[/tex]
Where
h=[tex]6.63\times 10^{-34}[/tex]J-s=Plank's constant
[tex]\lambda=[/tex]Wavelength of photon
[tex]\lambda=\frac{h}{p}[/tex]
[tex]\lambda=\frac{6.63\times 10^{-34}}{8.3\times 10^{-28}}[/tex]
[tex]\lambda=7.99\times 10^{-7}[/tex] m
[tex]E=\frac{hc}{\lambda}[/tex]
[tex]E=\frac{6.63\times 10^{-34}\times 3\times 10^8}{7.99\times 10^{-7}}[/tex]
[tex]E=2.49\times 10^{-19}[/tex] J
Hence, the energy of photon=[tex]2.49\times 10^{-19}[/tex] J
B.Energy of photon in electron volt=[tex]\frac{2.49\times 10^{-19}}{1.6\times 10^{-19}}=1.55 eV[/tex]
Energy of photon=[tex]1.55eV[/tex]
C.Wavelength of photon =[tex]\lambda=7.99\times 10^{-7}m[/tex]