A segment has endpoints (-9,-20) and (14,12). What is the midpoint of this segment?

Answer:
The midpoint of segment AB is
[tex]\therefore M(x,y)=(\dfrac{5}{2}, -4)[/tex]
Step-by-step explanation:
Given:
Let the end points be
point A( x₁ , y₁) ≡ ( -9 , -20)
point B( x₂ , y₂) ≡ (14 , 12)
M( x , y ) be the Mid point of AB
To Find:
M( x , y ) = ?
Solution:
If M is the midpoint of segment AB then by midpoint formula the M coordinates are given by,
[tex]Mid\ pointM(x,y)=(\frac{x_{1}+x_{2} }{2}, \frac{y_{1}+y_{2} }{2})[/tex]
On substituting the values in above formula we get
[tex]M(x,y)=(\frac{-9+14 }{2}, \frac{-20+12 }{2})=(\frac{5}{2}, \frac{-8}{2})[/tex]
[tex]\therefore M(x,y)=(\dfrac{5}{2}, -4)[/tex]