Respuesta :

Answer:

The midpoint of segment AB is

[tex]\therefore M(x,y)=(\dfrac{5}{2}, -4)[/tex]

Step-by-step explanation:

Given:

Let the end points be

point A( x₁ , y₁) ≡ ( -9 , -20)

point B( x₂ , y₂) ≡ (14 , 12)

M( x , y ) be the Mid point of AB

To Find:

M( x , y ) = ?

Solution:

If M is the midpoint of segment AB then by midpoint formula the M coordinates are given by,

[tex]Mid\ pointM(x,y)=(\frac{x_{1}+x_{2} }{2}, \frac{y_{1}+y_{2} }{2})[/tex]

On substituting the values in above formula we get

[tex]M(x,y)=(\frac{-9+14 }{2}, \frac{-20+12 }{2})=(\frac{5}{2}, \frac{-8}{2})[/tex]

[tex]\therefore M(x,y)=(\dfrac{5}{2}, -4)[/tex]

ACCESS MORE