Respuesta :
Answer:
29.76245 rad/s², -117.80972 rad/s²
28.2743 rad/s
3.95833
Explanation:
[tex]\omega_f[/tex] = Final angular velocity
[tex]\omega_i[/tex] = Initial angular velocity
[tex]\alpha[/tex] = Angular acceleration
[tex]\theta[/tex] = Angle of rotation
t = Time taken
Equation of rotational motion
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\frac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\frac{4.5\times 2\pi-0}{0.95}\\\Rightarrow \alpha=29.76245\ rad/s^2[/tex]
Angular acceleration during speed up is 29.76245 rad/s²
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\frac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\frac{0-4.5\times 2\pi}{0.24}\\\Rightarrow \alpha=-117.80972\ rad/s^2[/tex]
Angular acceleration during spin down is -117.80972 rad/s²
Angular speed is given by
[tex]\omega=2\pi 4.5=28.2743\ rad/s[/tex]
Maximum angular speed reached by the flywheel is 28.2743 rad/s
[tex]\theta=\omega_it+\frac{1}{2}\alpha t^2\\\Rightarrow \theta=0\times t+\frac{1}{2}\times 29.76245\times 0.95^2\\\Rightarrow \theta=13.4303\ rad[/tex]
[tex]\theta=\omega_it+\frac{1}{2}\alpha t^2\\\Rightarrow \theta=2\pi 4.5\times 0.24+\frac{1}{2}\times -117.80972\times 0.24^2\\\Rightarrow \theta=3.39292\ rad[/tex]
The ratio would be [tex]\dfrac{13.4303}{3.39292}=3.95833[/tex]