Find the volume of the solid generated by revolving about the x-axis the region bounded by the upper half of the ellipse(x^2/a^2)+(y^2/b^2)=1and the x-axis, and thus find the volume of a prolate spheroid. Here a and b are positive constants, with a>b.Volume of the solid of revolution:

Respuesta :

The upper half of the ellipse has equation

[tex]y=\dfrac ba\sqrt{a^2-x^2}[/tex]

with [tex]-a\le x\le a[/tex], so that the volume of the solid (using the disk method) is

[tex]\displaystyle\frac{\pi b}a\int_{-a}^a\left(\sqrt{a^2-x^2}\right)^2-0^2\,\mathrm dx=\frac{2\pi b}a\int_0^a(a^2-x^2)\,\mathrm dx[/tex]

[tex]\displaystyle=\frac{2\pi b}a\left(a^2x-\frac{x^3}3\right)\bigg|_0^a[/tex]

[tex]\displaystyle=\boxed{\frac{4\pi a^2b}3}[/tex]

ACCESS MORE