The upper half of the ellipse has equation
[tex]y=\dfrac ba\sqrt{a^2-x^2}[/tex]
with [tex]-a\le x\le a[/tex], so that the volume of the solid (using the disk method) is
[tex]\displaystyle\frac{\pi b}a\int_{-a}^a\left(\sqrt{a^2-x^2}\right)^2-0^2\,\mathrm dx=\frac{2\pi b}a\int_0^a(a^2-x^2)\,\mathrm dx[/tex]
[tex]\displaystyle=\frac{2\pi b}a\left(a^2x-\frac{x^3}3\right)\bigg|_0^a[/tex]
[tex]\displaystyle=\boxed{\frac{4\pi a^2b}3}[/tex]