Respuesta :
Parameterize [tex]S[/tex] by the vector function
[tex]\vec r(x,y)=x\,\vec\imath+y\,\vec\jmath+f(x,y)\,\vec k[/tex]
so that the normal vector to [tex]S[/tex] is given by
[tex]\dfrac{\partial\vec r}{\partial x}\times\dfrac{\partial\vec r}{\partial y}=\left(\vec\imath+\dfrac{\partial f}{\partial x}\,\vec k\right)\times\left(\vec\jmath+\dfrac{\partial f}{\partial y}\,\vec k\right)=-\dfrac{\partial f}{\partial x}\vec\imath-\dfrac{\partial f}{\partial y}\vec\jmath+\vec k[/tex]
with magnitude
[tex]\left\|\dfrac{\partial\vec r}{\partial x}\times\dfrac{\partial\vec r}{\partial y}\right\|=\sqrt{\left(\dfrac{\partial f}{\partial x}\right)^2+\left(\dfrac{\partial f}{\partial y}\right)^2+1}[/tex]
In this case, the normal vector is
[tex]\dfrac{\partial\vec r}{\partial x}\times\dfrac{\partial\vec r}{\partial y}=-\dfrac{\partial(8-x-2y)}{\partial x}\,\vec\imath-\dfrac{\partial(8-x-2y)}{\partial y}\,\vec\jmath+\vec k=\vec\imath+2\,\vec\jmath+\vec k[/tex]
with magnitude [tex]\sqrt{1^2+2^2+1^2}=\sqrt6[/tex]. The integral of [tex]f(x,y,z)=e^z[/tex] over [tex]S[/tex] is then
[tex]\displaystyle\iint_Se^z\,\mathrm d\Sigma=\sqrt6\iint_Te^{8-x-2y}\,\mathrm dy\,\mathrm dx[/tex]
where [tex]T[/tex] is the region in the [tex]x,y[/tex] plane over which [tex]S[/tex] is defined. In this case, it's the triangle in the plane [tex]z=0[/tex] which we can capture with [tex]0\le x\le8[/tex] and [tex]0\le y\le\frac{8-x}2[/tex], so that we have
[tex]\displaystyle\sqrt6\iint_Te^{8-x-2y}\,\mathrm dx\,\mathrm dy=\sqrt6\int_0^8\int_0^{(8-x)/2}e^{8-x-2y}\,\mathrm dy\,\mathrm dx=\boxed{\sqrt{\frac32}(e^8-9)}[/tex]