Which expression is equivalent to RootIndex 3 StartRoot StartFraction 75 a Superscript 7 Baseline b Superscript 4 Baseline Over 40 a Superscript 13 Baseline c Superscript 9 Baseline EndFraction EndRoot? Assume a not-equals 0 and c not-equals 0.
A. StartFraction a cubed b (RootIndex 3 StartRoot 15 b squared EndRoot) Over 2 c cubed EndFraction
B. StartFraction b (RootIndex 3 StartRoot 15 b EndRoot) Over 2 a squared c cubed EndFraction
C. StartFraction a cubed b (RootIndex 3 StartRoot 15 b squared EndRoot) Over 6 c cubed EndFraction
D. StartFraction b (RootIndex 3 StartRoot 15 b EndRoot) Over 2 a c EndFraction

Respuesta :

Answer:

B. [tex]\frac{b}{2a^{2}c^3}\sqrt[3]{15b}[/tex]

Step-by-step explanation:

Given:

The expression to simplify is given as:

[tex]\sqrt[3]{\frac{75a^7b^4}{40a^{13}c^9}}[/tex]

Use the exponent property [tex]\frac{a^m}{a^n}=a^{m-n}[/tex]

[tex]\frac{a^7}{a^{13}}=a^{7-13}=a^{-6}[/tex]

Use the exponent property [tex](a^m)^n=a^{m\times n}[/tex]

[tex]a^{-6}=a^{-2\times 3}=(a^{-2})^3[/tex]

[tex]b^4=b\times b^3\\c^{9}=(c^3)^3[/tex]

Reducing [tex]\frac{75}{40}[/tex] to simplest form, we get:

[tex]\frac{5\times 5\times 3}{2^3\times 5}=\frac{15}{2^3}[/tex]

Therefore, expression becomes:

[tex]\sqrt[3]{\frac{15(a^{-2})^3\times b\times b^3}{2^3(c^3)^3}}[/tex]

Use the cubic root property:

[tex]\sqrt[3]{x^3} =x[/tex]. Thus, the expression becomes:

[tex]\frac{a^{-2}b}{2c^3}\sqrt[3]{15b}[/tex]

Using the exponent property [tex]a^{-m}=\frac{1}{a^m}[/tex]

[tex]a^{-2}=\frac{1}{a^2}[/tex]

So, the final expression is:

[tex]\frac{b}{2a^{2}c^3}\sqrt[3]{15b}[/tex]

Therefore, the correct option is option B.

Answer:

B on edge2020

ACCESS MORE