Answer:
Part 1) [tex]m\angle C=50^o[/tex]
Part 2) [tex]a=7.1\ units[/tex]
Part 3) [tex]b=7.1\ units[/tex]
Step-by-step explanation:
step 1
Find the measure of angle C
we know that
The sum of the interior angles in any triangle must be equal to 180 degrees
[tex]m\angle A+m\angle B+m\angle C=180^o[/tex]
substitute the given values
[tex]65^o+65^o+m\angle C=180^o[/tex]
[tex]130^o+m\angle C=180^o[/tex]
[tex]m\angle C=180^o-130^o[/tex]
[tex]m\angle C=50^o[/tex]
step 2
Find the measure of side a
Applying the law of sines
[tex]\frac{a}{sin(A)}=\frac{c}{sin(C)}[/tex]
substitute the given values
[tex]\frac{a}{sin(65^o)}=\frac{6}{sin(50^o)}[/tex]
solve for a
[tex]a=\frac{6}{sin(50^o)}sin(65^o)[/tex]
[tex]a=7.1\ units[/tex]
step 3
Find the measure of side b
Applying the law of sines
[tex]\frac{b}{sin(B)}=\frac{c}{sin(C)}[/tex]
substitute the given values
[tex]\frac{b}{sin(65^o)}=\frac{6}{sin(50^o)}[/tex]
solve for b
[tex]b=\frac{6}{sin(50^o)}sin(65^o)[/tex]
[tex]b=7.1\ units[/tex]
The triangle ABC is an isosceles triangle