Respuesta :

Answer:

Part 1) [tex]m\angle C=50^o[/tex]

Part 2) [tex]a=7.1\ units[/tex]

Part 3) [tex]b=7.1\ units[/tex]

Step-by-step explanation:

step 1

Find the measure of angle C

we know that

The sum of the interior angles in any triangle must be equal to 180 degrees

[tex]m\angle A+m\angle B+m\angle C=180^o[/tex]

substitute the given values

[tex]65^o+65^o+m\angle C=180^o[/tex]

[tex]130^o+m\angle C=180^o[/tex]

[tex]m\angle C=180^o-130^o[/tex]

[tex]m\angle C=50^o[/tex]

step 2

Find the measure of side a

Applying the law of sines

[tex]\frac{a}{sin(A)}=\frac{c}{sin(C)}[/tex]

substitute the given values

[tex]\frac{a}{sin(65^o)}=\frac{6}{sin(50^o)}[/tex]

solve for a

[tex]a=\frac{6}{sin(50^o)}sin(65^o)[/tex]

[tex]a=7.1\ units[/tex]

step 3

Find the measure of side b

Applying the law of sines

[tex]\frac{b}{sin(B)}=\frac{c}{sin(C)}[/tex]

substitute the given values

[tex]\frac{b}{sin(65^o)}=\frac{6}{sin(50^o)}[/tex]

solve for b

[tex]b=\frac{6}{sin(50^o)}sin(65^o)[/tex]

[tex]b=7.1\ units[/tex]

The triangle ABC is an isosceles triangle

ACCESS MORE