Respuesta :

Answer:

252

Step-by-step explanation:

We know the binomial expansion of  

[tex](a + x)^{n} = a^{n} + C_{1}a^{(n - 1)} x + C_{2} a^{(n - 2)} x^{2} + ........ + C_{r} a^{(n - r)} x^{r} + ........ + x^{n}[/tex]

Therefore, in the binomial expansion of [tex](x + y)^{10}[/tex] the term with [tex]x^{5}y^{5}[/tex] expression will be there when r = 5

Hence, the term will be [tex]^{10}C_{5} x^{5} y^{5}[/tex].

Therefore, the coefficient of [tex]x^{5}y^{5}[/tex] will be

[tex]^{10}C_{5} = \frac{10!}{5! \times 5!} = 252[/tex] (Answer)

RELAXING NOICE
Relax