Answer:
[tex]\mu_x=103\\\sigma_x=2.6[/tex]
Step-by-step explanation:
For any random variable x,
We know that the mean and the standard deviation of the sampling distribution of the sample mean x is given by :-
[tex]\mu_x=\mu\\\\\sigma_x=\dfrac{\sigma}{\sqrt{n}}[/tex]
, where n = sample size.
[tex]\mu[/tex]= population mean
[tex]\sigma[/tex]= population standard deviation equal.
Given : n=25
[tex]\mu=103[/tex]
[tex]\sigma=13[/tex]
Then , the mean and the standard deviation of the sampling distribution of the sample mean x will be :-
[tex]\mu_x=\mu=103\\\\\sigma_x=\dfrac{\sigma}{\sqrt{n}}\\\\=\dfrac{13}{\sqrt{25}}\\\\=\dfrac{13}{5}=2.6[/tex]
Hence, the mean and the standard deviation of the sampling distribution of the sample mean x :
[tex]\mu_x=103\\\sigma_x=2.6[/tex]