Respuesta :
Answer:
a) [tex]\large F(x,y)=(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2})[/tex]
b) [tex]\large \mathbb{R}^2-\{(0,0)\}[/tex]
c) the points of the form (x, -x) for x≠0
Step-by-step explanation:
a)
If φ(x, y) = arctan (y/x), the vector field F = ∇φ would be
[tex]\large F(x,y)=(\frac{\partial \phi}{\partial x},\frac{\partial \phi}{\partial y})[/tex]
On one hand we have,
[tex]\large \frac{\partial \phi}{\partial x}=\frac{\partial arctan(y/x)}{\partial x}=\frac{-y/x^2}{1+(y/x)^2}=-\frac{y/x^2}{1+y^2/x^2}=\\\\=-\frac{y/x^2}{(x^2+y^2)/x^2}=-\frac{y}{x^2+y^2}[/tex]
On the other hand,
[tex]\large \frac{\partial \phi}{\partial y}=\frac{\partial arctan(y/x)}{\partial y}=\frac{1/x}{1+(y/x)^2}=\frac{1/x}{1+y^2/x^2}=\\\\=\frac{1/x}{(x^2+y^2)/x^2}=\frac{x}{x^2+y^2}[/tex]
So
[tex]\large F(x,y)=(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2})[/tex]
b)
The domain of definition of F is
[tex]\large \mathbb{R}^2-\{(0,0)\}[/tex]
i.e., all the plane X-Y except the (0,0)
c)
Here we want to find all the points such that
[tex]\large (-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2})=(k,k)[/tex]
where k is a real number other than 0.
But this means
[tex]\large -\frac{y}{x^2+y^2}=\frac{x}{x^2+y^2}\Rightarrow y=-x[/tex]
So, all the points in the line y = -x except (0,0) are parallel to the vector field F, that is, the points (x, -x) with x≠ 0