A cannon shoots an artillery shell with a initial velocity of 400 meters/second at an indirect fire angle of 60 on level ground where does it land if friction effects are neglected

Respuesta :

Answer: 14139.19 m

Explanation:

This situation is related to parabolic motion and can be solved using the following equations:

[tex]x=V_{o}cos \theta t[/tex] (1)

[tex]y=y_{o}+V_{o} sin \theta t+\frac{g}{2}t^{2}[/tex] (2)

Where:

[tex]x[/tex] is the horizontal distance (where the artillery shell lands)

[tex]V_{o}=400 m/s[/tex] is the initial velocity

[tex]\theta=60\°[/tex] is the angle

[tex]t[/tex] is the time

[tex]y=0 m[/tex] is the final height

[tex]y_{o}=0 m[/tex] is the initial height

[tex]g=-9.8 m/s^{2}[/tex] is the acceleration due gravity, always directed downwards

So, let's begin by isolating [tex]t[/tex] from (2):

[tex]0=V_{o} sin \theta t+\frac{g}{2}t^{2}[/tex] (3)

[tex]t=-\frac{2 V_{o}sin \theta}{g}[/tex] (4)

Substituting (4) in (1):

[tex]x=V_{o}cos \theta (-\frac{2 V_{o}sin \theta}{g})[/tex] (5)

Rewriting (5) and taking into account [tex]sin(2\theta)=2 sin \theta cos \theta[/tex]:

[tex]x=-\frac{V_{o}^{2}sin(2\theta)}{g}[/tex] (6)

[tex]x=-\frac{(400 m/s)^{2}sin(2(60\°))}{-9.8 m/s^{2}}[/tex] (7)

Finally:

[tex]x=14139.19 m[/tex]