Answer: 14139.19 m
Explanation:
This situation is related to parabolic motion and can be solved using the following equations:
[tex]x=V_{o}cos \theta t[/tex] (1)
[tex]y=y_{o}+V_{o} sin \theta t+\frac{g}{2}t^{2}[/tex] (2)
Where:
[tex]x[/tex] is the horizontal distance (where the artillery shell lands)
[tex]V_{o}=400 m/s[/tex] is the initial velocity
[tex]\theta=60\°[/tex] is the angle
[tex]t[/tex] is the time
[tex]y=0 m[/tex] is the final height
[tex]y_{o}=0 m[/tex] is the initial height
[tex]g=-9.8 m/s^{2}[/tex] is the acceleration due gravity, always directed downwards
So, let's begin by isolating [tex]t[/tex] from (2):
[tex]0=V_{o} sin \theta t+\frac{g}{2}t^{2}[/tex] (3)
[tex]t=-\frac{2 V_{o}sin \theta}{g}[/tex] (4)
Substituting (4) in (1):
[tex]x=V_{o}cos \theta (-\frac{2 V_{o}sin \theta}{g})[/tex] (5)
Rewriting (5) and taking into account [tex]sin(2\theta)=2 sin \theta cos \theta[/tex]:
[tex]x=-\frac{V_{o}^{2}sin(2\theta)}{g}[/tex] (6)
[tex]x=-\frac{(400 m/s)^{2}sin(2(60\°))}{-9.8 m/s^{2}}[/tex] (7)
Finally:
[tex]x=14139.19 m[/tex]