Answer:
The original concentration of copper(II) sulfate in the sample is 0.0082 mol/L.
Explanation:
[tex]Fe(s) + CuSO_4(aq)\rightarrow Cu(s) + FeSO_4(aq)[/tex]
Mass of copper precipitated out = 52 mg = 0.052 g
Moles of copper = [tex]\frac{0.052 g}{63.5 g/mol}=0.0008189 mol[/tex]
According to reaction, 1 mole of copper is obtained from 1 mole of copper sulfate.
Then 0.0008189 mole of copper will be obtained from:
[tex]\frac{1}{1}\times 0.0008189 mol=0.0008189 mol[/tex] copper sulfate
Moles of copper sulfate = 0.0008189 mol
[tex]CuSO_4\rightarrow Cu^{2+}+SO_4^{2-}[/tex]
1 mole of copper sulfate produces 1 mole of copper (II) ions.Then 0.0008189 moles of copper sulfate will produce:
[tex]1\times 0.0008189 mol=0.0008189 mol[/tex] copper (II) ions.
[tex]Concentration = \frac{Moles}{Volume (L)}[/tex]
Concentration of copper (II) ions = [tex][Cu^{2+}][/tex]
Volume of the solution = 100 mL = 0.100 L
[tex][Cu^{2+}]=\frac{0.0008189 mol}{0.100 L}=0.008189 mol/L\approx 0.0082 mol/L[/tex]
The original concentration of copper(II) sulfate in the sample is 0.0082 mol/L.