Respuesta :
I didn't get all the part with the tiles, but here's the general answer:
given a polynomial
[tex]p(x)=ax^2+bx+c[/tex]
we have that [tex]x-k[/tex] is a factor of [tex]p(x)[/tex] if and only if k is a root of [tex]p(x)[/tex], i.e. if
[tex]p(k)=ak^2+bk+c=0[/tex]
So, given the polynomial
[tex]p(x)=x^2-9x+14[/tex]
We can check if [tex]x-9[/tex] is a factor by evaluating [tex]p(9)[/tex]:
[tex]p(9)=81-81+14=14\neq 0[/tex]
So, [tex]x-9[/tex] is not a factor.
Similarly, we can evaluate [tex]p(2),\ p(-5),\ p(-7)[/tex] to check if [tex]x-2,\ x+5,\ x+7[/tex] are factors:
[tex]p(2)=4-18+14=0,\quad p(-5)=25+45+14=84\neq 0,\quad p(-7)=49+63+14=126 \neq 0[/tex]
So, only [tex]x-2[/tex] is a factor of [tex]x^2-9x+14[/tex]