Respuesta :
Thickness of strand hair = 50 μm
Diameter of an atom = [tex]1 \times 10^{-10} m[/tex]
Now, with the help of conversion factors, convert thickness in micrometer into meter i.e. 1 micrometer = [tex]10^{-6}m[/tex]
So, thickness of strand hair =50 μm= 50 \times 10^{-6} m
Therefore,
number of atoms thick is a strand of hair = [tex]50 \times 10^{-6}m\times \frac{1 atom}{1 \times 10^{-10}m}[/tex]
= [tex]50\times 10^{4}atoms[/tex]
Hence, number of atoms is [tex]50\times 10^{4}atoms[/tex]thick is a strand of hair.
Answer : The number of atoms thick in a strand of hair are [tex]5\times 10^5\text{ atoms}[/tex]
Explanation : Given,
Diameter of an atom = [tex]1\times 10^{-10}m[/tex]
Thickness of strand of hair = [tex]50\mu m=50\times 10^10^{-6}m[/tex]
conversion used : [tex]1\mu m=10^{-6}m[/tex]
Now we have to determine the number of atoms thick in a strand of hair.
[tex]\text{Number of atoms thick}=\frac{50\times 10^10^{-6}m}{1\times 10^{-10}m}=5\times 10^5\text{ atoms}[/tex]
Therefore, the number of atoms thick in a strand of hair are [tex]5\times 10^5\text{ atoms}[/tex]