A strand of hair is approximately 50 μm thick. If the diameter of an atom is 1 × 10-10 m, how many atoms thick is a strand of hair?

Respuesta :

Thickness of strand hair = 50 μm

Diameter of an atom  = [tex]1 \times 10^{-10} m[/tex]

Now, with the help of conversion factors, convert thickness in micrometer into meter i.e. 1 micrometer = [tex]10^{-6}m[/tex]

So, thickness of strand hair =50 μm= 50 \times 10^{-6} m

Therefore,

number of atoms thick is a strand of hair =  [tex]50 \times 10^{-6}m\times \frac{1 atom}{1 \times 10^{-10}m}[/tex]

= [tex]50\times 10^{4}atoms[/tex]

Hence, number of atoms is [tex]50\times 10^{4}atoms[/tex]thick is a strand of hair.


Answer : The number of atoms thick in a strand of hair are [tex]5\times 10^5\text{ atoms}[/tex]

Explanation : Given,

Diameter of an atom = [tex]1\times 10^{-10}m[/tex]

Thickness of strand of hair = [tex]50\mu m=50\times 10^10^{-6}m[/tex]

conversion used : [tex]1\mu m=10^{-6}m[/tex]

Now we have to determine the number of atoms thick in a strand of hair.

[tex]\text{Number of atoms thick}=\frac{50\times 10^10^{-6}m}{1\times 10^{-10}m}=5\times 10^5\text{ atoms}[/tex]

Therefore, the number of atoms thick in a strand of hair are [tex]5\times 10^5\text{ atoms}[/tex]