Answer:
The air pressure in the tank is 53.9 [tex]kN/m^{2}[/tex]
Solution:
As per the question:
Discharge rate, Q = 20 litres/ sec = [tex]0.02\ m^{3}/s[/tex]
(Since, 1 litre = [tex]10^{-3} m^{3}[/tex])
Diameter of the bore, d = 6 cm = 0.06 m
Head loss due to friction, [tex]H_{loss} = 45 cm = 0.45\ m[/tex]
Height, [tex]h_{roof} = 2.5\ m[/tex]
Now,
The velocity in the bore is given by:
[tex]v = \frac{Q}{\pi (\frac{d}{2})^{2}}[/tex]
[tex]v = \frac{0.02}{\pi (\frac{0.06}{2})^{2}} = 7.07\ m/s[/tex]
Now, using Bernoulli's eqn:
[tex]\frac{P}{\rho g} + \frac{v^{2}}{2g} + h = k[/tex] (1)
The velocity head is given by:
[tex]\frac{v_{roof}^{2}}{2g} = \frac{7.07^{2}}{2\times 9.8} = 2.553[/tex]
Now, by using energy conservation on the surface of water on the roof and that in the tank :
[tex]\frac{P_{tank}}{\rho g} + \frac{v_{tank}^{2}}{2g} + h_{tank} = \frac{P_{roof}}{\rho g} + \frac{v_{tank}^{2}}{2g} + h_{roof} + H_{loss}[/tex]
[tex]\frac{P_{tank}}{\rho g} + 0 + 0 = \0 + 2.553 + 2.5 + 0.45[/tex]
[tex]P_{tank} = 5.5\times \rho \times g[/tex]
[tex]P_{tank} = 5.5\times 1\times 9.8 = 53.9\ kN/m^{2}[/tex]