Answer:
[tex]v = R\omega(-sin\omega t \hat i + cos\omega t \hat j)[/tex]
Explanation:
As we know that the mass is revolving with constant angular speed in the circle of radius R
So we will have
[tex]\theta = \omega t[/tex]
now the position vector at a given time is
[tex]r = Rcos\theta \hat i + R sin\theta \hat j[/tex]
now the linear velocity is given as
[tex]v = \frac{dr}{dt}[/tex]
[tex]v = (-R sin\theta \hat i + R cos\theta \hat j)\frac{d\theta}{dt}[/tex]
[tex]v = R\omega(-sin\omega t \hat i + cos\omega t \hat j)[/tex]