Respuesta :
Answer:
1.98 miles per hour.
Step-by-step explanation:
Let x miles per hour be the average rate on the return trip,
∵ The speed on round trip is 5 miles per hour faster than on return trip,
So, the speed in round trip = (x+5) miles per hour,
Now, distance in one sided trip = 6 miles,
Since,
[tex]Speed = \frac{Distance}{Time}\implies Time = \frac{Distance}{Speed}[/tex]
According to the question,
Time taken in return trip - Time taken in round trip = [tex]\frac{13}{6}[/tex] hours,
[tex]\implies \frac{6}{x}-\frac{6}{x+5}=\frac{13}{6}[/tex]
[tex]\frac{6x+30-6x}{x(x+5)}=\frac{13}{6}[/tex]
[tex]\frac{30}{x^2 + 5x}=\frac{13}{6}[/tex]
[tex]180 = 13x^2 + 65x[/tex]
[tex]13x^2 + 65x - 180 = 0[/tex]
By quadratic formula,
[tex]x=\frac{-65\pm \sqrt{65^2 - 4\times 13\times -180}}{26}[/tex]
[tex]x=\frac{-65\pm \sqrt{4225 + 9360}}{26}[/tex]
[tex]x=\frac{-65\pm \sqrt{13585}}{26}[/tex]
[tex]x\approx 1.98\text{ or }x=-6.98[/tex]
∵ speed can not be negative,
Hence, average rate on the return trip would be 1.98 miles per hour.
Answer:v=4 mph
Step-by-step explanation:
Given
Distance between school and home is 6 miles
let v be the speed during return trip in miles/hr
total time taken [tex]=2 hr 10 min \approx \frac{13}{6} hr[/tex]
During arrival [tex]t_1=\frac{6}{v+5}[/tex]
During Return [tex]t_2=\frac{6}{v}[/tex]
Total time [tex]t_1+t_2=\frac{13}{6}[/tex]
[tex]\frac{6}{v+5}+\frac{6}{v}=\frac{13}{6}[/tex]
[tex]6(\frac{1}{v+5}+\frac{1}{v})=\frac{13}{6}[/tex]
[tex]6\cdot \frac{2v+5}{v(v+5)}=\frac{13}{6}[/tex]
[tex]72v+180=13v^2+65v[/tex]
[tex]13v^2-7v-180=0[/tex]
[tex]v=\frac{7\pm \sqrt{7^2+4\times 13\times 180}}{2\times 13}[/tex]
[tex]v=4 mph[/tex]
Thus velocity during return trip [tex]v=4 mph[/tex]