A bus contains a 1440 kg flywheel (a disk that has a 0.63 m radius) and has a total mass of 10200 kg. Calculate the angular velocity the flywheel must have to contain enough energy to take the bus from rest to a speed of 21 m/s in rad/s, assuming 90.0% of the rotational kinetic energy can be transformed into translational energy.

Respuesta :

Answer:[tex]\omega =93.51 rad/s[/tex]

Explanation:

Given

mass of Flywheel [tex]m_1=1440 kg[/tex]

mass of bus [tex]m_b=10200 kg[/tex]

radius of Flywheel [tex]r=0.63 m[/tex]

final speed of bus [tex]v=21 m/s[/tex]

Conserving Energy i.e.

0.9(Rotational Energy of Flywheel)= change in Kinetic Energy of bus

Let [tex]\omega [/tex]be the angular velocity of Flywheel

[tex]0.9\cdot \frac{I\omega ^2}{2}=\frac{m_bv^2}{2}[/tex]

[tex]I=moment\ of\ Inertia =mr^2=1440\cdot 0.63^2=571.536 kg-m^2[/tex]

[tex]0.9\cdot \frac{571.536\cdot \omega ^2}{2}=\frac{10200\cdot 21^2}{2}[/tex]

[tex]\omega ^2=21^2\times \frac{10200}{0.9\times 571.536}[/tex]

[tex]\omega =21\times 4.45=93.51 rad/s[/tex]

ACCESS MORE