The cross section of a water bin is shaped like a trapezoid. The bases of the trapezoid are 28 feet and 6 feet long. It has an area of 34 square feet. What is the height of the cross section?

Respuesta :

Answer:

The height of the cross section if 2 feet

Step-by-step explanation:

To solve this problem recall the formula for the area of a trapezoid of bases B (larger base) and b (smaller base) and height H:

[tex]Area = \frac{(B+b)\,H}{2}[/tex]

Therefore, for our case we have:

[tex]Area = \frac{(B+b)\,H}{2}\\34 \,ft^2 = \frac{(28\,ft+6\,ft)\,H}{2}\\34 \,ft^2 = \frac{(34 \,ft)\,H}{2}[/tex]

So, now we can solve for the height H:

[tex]34 \,ft^2 = \frac{(34 \,ft)\,H}{2}\\2\,*\,34 \,ft^2 =34\,ft\,* H\\H=\frac{2\,*\,34 \,ft^2}{34\,ft}\\ H=2\,ft[/tex]