Answer:
The height of the cross section if 2 feet
Step-by-step explanation:
To solve this problem recall the formula for the area of a trapezoid of bases B (larger base) and b (smaller base) and height H:
[tex]Area = \frac{(B+b)\,H}{2}[/tex]
Therefore, for our case we have:
[tex]Area = \frac{(B+b)\,H}{2}\\34 \,ft^2 = \frac{(28\,ft+6\,ft)\,H}{2}\\34 \,ft^2 = \frac{(34 \,ft)\,H}{2}[/tex]
So, now we can solve for the height H:
[tex]34 \,ft^2 = \frac{(34 \,ft)\,H}{2}\\2\,*\,34 \,ft^2 =34\,ft\,* H\\H=\frac{2\,*\,34 \,ft^2}{34\,ft}\\ H=2\,ft[/tex]