Respuesta :
Answer:
1. [tex]I_0=424.7208\,kg.m^2[/tex]
2. [tex]I_f=256.1808\,kg.m^2[/tex]
3. [tex]\omega_f=3.3158\,rad.s^{-1}[/tex]
4. [tex]\Delta KE=558.8432\,J[/tex]
5. [tex]a_c=5.8271\,m.s^{-2}[/tex]
6. [tex]\omega_0=2\,rad.s^{-1}[/tex]
Explanation:
Given:
mass of the person, [tex]m_p=75\,kg[/tex]
radius of the disk, [tex]r=1.59\,m[/tex]
mass of the disk, [tex]m_d=186\,kg[/tex]
initial angular speed of the disk, [tex]\omega_0=2\,rad.s^{-1}[/tex]
distance of the person from the center of the disk, [tex]d=0.53\,m[/tex]
1.
Initial moment of inertia of the system when the man stands at the rim of disk:
Moment of inertia of the disc:
[tex]I_D=\frac{1}{2} .m_d.R^2[/tex]
[tex]I_D=\frac{1}{2} \times 186\times 1.59^2[/tex]
[tex]I_D=235.1133\,kg.m^2[/tex]
Now for the person, we treat the mass to be a point revolving around R:
[tex]I_P=m_p.R^2[/tex]
[tex]I_P=75\times 1.59^2[/tex]
[tex]I_P=189.6075\,kg.m^2[/tex]
∴We have the moment of inertia of the system in this case as:
[tex]I_0=I_D+I_P[/tex]
[tex]I_0=235.1133+189.6075[/tex]
[tex]I_0=424.7208\,kg.m^2[/tex]
2.
Moment of inertia when the person stands at 0.53 m from the center of the disk:
Moment of inertia of the disk will be constant:
[tex]I_D=235.1133\,kg.m^2[/tex]
For the person, we treat the mass to be a point revolving around radius 0.53 m:
[tex]I_P=75\times 0.53^2[/tex]
[tex]I_P=21.0675\,kg.m^2[/tex]
∴We have the moment of inertia of the system
[tex]I_f=I_D+I_P[/tex]
[tex]I_f=235.1133+21.0675[/tex]
[tex]I_f=256.1808\,kg.m^2[/tex]
3.
The final angular velocity of the disk:
Using the conservation of angular momentum:
[tex]I_0.\omega_0=I_f.\omega_f[/tex]
[tex]424.7208\times 2=256.1808\times \omega_f[/tex]
[tex]\omega_f=3.3158\,rad.s^{-1}[/tex]
4.
Change in Kinetic Energy:
∵[tex]KE=\frac{1}{2} I.\omega^2[/tex]
∴[tex]\Delta KE= \frac{1}{2} (I_f.\omega_f^2-I_0.\omega_0^2)[/tex]
[tex]\Delta KE=\frac{1}{2} (256.1808\times 3.3158^2-424.7208\times 2^2)[/tex]
[tex]\Delta KE=558.8432\,J[/tex]
5.
Centripetal acceleration of the person when she is at R/3:
Centripetal acceleration is given as:
[tex]a_c=r'.\omega^2[/tex]
we have ω=3.3158 radian per second at R=0.53 m
[tex]a_c=\frac{R}{3} .\omega^2[/tex]
[tex]a_c=0.53\times 3.3158^2[/tex]
[tex]a_c=5.8271\,m.s^{-2}[/tex]
6.
If the person now walks back to the rim of the disk:
Then by the law of conservation of angular momentum the initial angular speed of [tex]\omega_0=2\,rad.s^{-1}[/tex] will be restored.
The disk and person system has more energy when the person moves
closer to the center of the disk.
- The total moment of inertia is approximately 424.721 kg·m²
- Total moment of inertia when standing 2/3 of the way towards the center, is approximately 256.181 kg·m²
- Final angular velocity at new position is approximately 3.316 rad/s
- Change in kinetic energy is approximately 559.02 J
- Centripetal acceleration when she is at R/3 is approximately 5.83 rad/s².
Reasons:
1. The total moment of inertia, [tex]I_1[/tex] = [tex]I_{person}[/tex] + [tex]I_{disc}[/tex] = [tex]m_p[/tex]·R² + 0.5·[tex]m_d[/tex]·R²
∴ [tex]I_1[/tex] = 75×1.59² + 0.5×186×1.59² ≈ 424.721
The total moment of inertia, [tex]I_1[/tex] ≈ 424.721 kg·m²
2. At 2/3 the distance towards the center, the radius of the path of the person, r = 1/3×1.59 = 0.53
∴ [tex]I_{2}[/tex] = 75×0.53² + 0.5×186×1.59² ≈ 256.181
The total moment of inertia, [tex]I_{2}[/tex] ≈ 256.181 kg·m²
3. I₁·ω₁ = I₂·ω₂ (conservation of angular momentum)
424.721 × 2 ≈ 256.181 × ω₂
[tex]\omega _ 2 = \mathbf{\dfrac{424.721 \times 2}{256.181}} \approx 3.316[/tex]
The final angular velocity, ω₂ ≈ 3.316 rad/s
4. Change in (rotational) kinetic energy, ΔK.E. = 0.5·I₂·ω₂² - 0.5·I₁·ω₁²
∴ ΔK.E. = 0.5 × 256.181 × 3.316² - 0.5 × 424.721 × 2² ≈ 559.02
The change rotational in kinetic energy, ΔK.E. ≈ 559.02 J
5. Centripetal acceleration = ω²·r
When r = R/3 = 1.59/3, centripetal acceleration, [tex]a_c[/tex] = 3.316²×1.59/3 ≈ 5.83
Centripetal acceleration when she is at R/3, [tex]a_c[/tex] ≈ 5.83 rad/s²
6. I₁·ω₁ = I₂·ω₂ (conservation of angular momentum)
256.181 × 3.316 = 424.721 × ω₂
[tex]\omega _ 2 = \dfrac{256.181\times 3.316}{424.721} = 2[/tex]
The final angular speed, ω₂ ≈ 2 rad/s
Learn more here:
https://brainly.com/question/15562821
![Ver imagen oeerivona](https://us-static.z-dn.net/files/ddd/0cbd7133f1620d7c9ddc8cd4547240ac.jpg)