Respuesta :
Answer:
For A: The equation is written below.
For B: The value of standard Gibbs free energy of the reaction is 19148.5 J
For C: The value of Gibbs free energy change at equilibrium is equal to 0.
For D: The Gibbs free energy change of the reaction is -29.8 kJ
Explanation:
- For A:
The chemical equation for the dissociation of methylamine in water follows:
[tex]CH_3NH_2(aq.)+H_2O(l)\rightleftharpoons CH_3NH_3^+(aq.)+OH^-(aq.)[/tex]
The expression for the base dissociation constant follows:
[tex]K_b=\frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}[/tex]
Water does not appear in the expression because it is a pure liquid.
- For B:
Relation between standard Gibbs free energy and equilibrium constant follows:
[tex]\Delta G^o=-RT\ln K_b[/tex]
where,
[tex]\Delta G^o[/tex] = standard Gibbs free energy
R = Gas constant = [tex]8.314J/K mol[/tex]
T = temperature = [tex]25^oC=[273+25]K=298K[/tex]
[tex]K_b[/tex] = base dissociation constant = [tex]4.4\times 10^{-4}[/tex]
Putting values in above equation, we get:
[tex]\Delta G^o=-(8.314J/Kmol)\times 298K\times \ln (4.4\times 10^{-4})\\\\\Delta G^o=19148.5J[/tex]
Hence, the value of standard Gibbs free energy of the reaction is 19148.5 J
- For C:
At equilibrium, the Gibbs free energy change of the reaction is taken as 0.
- For D:
To calculate the concentration of hydroxide ion, we take ionic product of water. The expression of ionic product of water is written as:
[tex]K_w=[H^+]\times [OH^-][/tex]
We are given:
[tex][H^+]=1.6\times 10^{-8}M\\K_w=10^{-14}[/tex]
Putting values in above equation, we get:
[tex]10^{-14}=1.6\times 10^{-8}\times [OH^-][/tex]
[tex][OH^-]=\frac{10^{-14}}{1.6\times 10^{-8}}=6.25\times 10^{-7}[/tex]
To calculate the Gibbs free energy of the reaction, we use the equation:
[tex]\Delta G=\Delta G^o+RT\ln (\frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]})[/tex]
where,
[tex]\Delta G[/tex] = Gibbs' free energy of the reaction = ?
[tex]\Delta G^o[/tex] = Standard gibbs' free energy change of the reaction = 19148.5 J
R = Gas constant = [tex]8.314J/K mol[/tex]
T = Temperature = 298 K
[tex][CH_3NH_2]=0.130M[/tex]
[tex][CH_3NH_3^+]=5.5\times 10^{-4}M[/tex]
[tex][OH^-]=6.25\times 10^{-7}M[/tex]
Putting values in above equation, we get:
[tex]\Delta G=19148.5+(8.314)(298)\ln (\frac{5.5\times 10^{-4}\times 6.25\times 10^{-7}}{0.130})\\\\\Delta G=-29789.7J[/tex]
Converting this into kilojoules, we use the conversion factor:
1 kJ = 1000 J
So, [tex]-29789.7J=-29.8kJ[/tex]
Hence, the Gibbs free energy change of the reaction is -29.8 kJ
The value of Gibbs free energy at equilibrium has been -29.8 kJ.
The [tex]\rm K_b[/tex] has been used for the determination of the strength of base in an ionization reaction.
The reaction can be given as:
[tex]\rm CH_3NH_2\;(aq)\;+\;H_2O\;(l)\;\rightarrow\;CH_3NH_3^+\;(aq.)\;+\;OH^-\;(aq)[/tex]
The equation for [tex]\rm K_b[/tex] has been:
[tex]\rm K_b[/tex] = [tex]\rm \dfrac{[CH_3NH_3^+]\;+\;[OH^-]}{[CH_3NH_2]}[/tex]
[tex]\Delta[/tex]G standard = -RT In[tex]\rm K_b[/tex]
[tex]\Delta[/tex]G standard = - 8.314 [tex]\times[/tex] 298 K(25 [tex]\rm ^\circ C[/tex]) [tex]\rm \times\;In(4.4\;\times\;10^-^4)[/tex]
[tex]\Delta[/tex]G standard = 19148.5 J
At equilibrium, the value of Gibbs free energy has been zero.
The value of [tex]\Delta[/tex]G for the given values has been:
The concentration of hydroxide ion has to be calculated:
[tex]\rm [OH^-]\;=\;\dfrac{k_w}{[H^+]}[/tex]
[tex]\rm k_w[/tex] = [tex]\rm 10^-^1^4[/tex]
[tex]\rm [H^+][/tex] = 1.6 [tex]\rm \times\;10^-^8[/tex] M
[tex]\rm [OH^-][/tex] = [tex]\rm \dfrac{10^-^1^4}{1.6\;\times\;10^-^8}[/tex] M
[tex]\rm [OH^-][/tex] = 6.25 [tex]\rm \times\;10^-^7[/tex] M
The [tex]\Delta[/tex]G at equilibrium can be given as:
[tex]\Delta[/tex]G = standard [tex]\Delta[/tex]G + RT In[tex]\rm \dfrac{[CH_3NH_3^+]\;+\;[OH^-]}{[CH_3NH_2]}[/tex]
[tex]\Delta[/tex]G = 19148.5 J + 8.314 [tex]\times[/tex] 298 [tex]\times[/tex] [tex]\rm In\dfrac{5.5\;\times\;10^-^4\;\times\;6.25\;\times\;10^-^7}{0.130}[/tex]
[tex]\Delta[/tex]G = -29789.7 J
[tex]\Delta[/tex]G = -29.8 kJ
The value of Gibbs free energy at equilibrium has been -29.8 kJ.
For more information about the Gibbs free energy, refer to the link:
https://brainly.com/question/24572190