Answer with Step-by -step explanation:
Sequence A;4,7,10,13,16
[tex]a_2-a_1=7-4=3[/tex]
[tex]a_3-a_2=10-7=3[/tex]
The difference between two consecutive terms is equal. Therefore, it forms arithmetic sequence.
Common difference, d=3
a=4
[tex]a_n=a+(n-1)d[/tex]
[tex]a_6=a+5d=4+5\times 3=19[/tex]
[tex]a_7=a+6d=4+6(3)=22[/tex]
[tex]a_8=a+7d=4+7(3)=25[/tex]
Sequence B: 5,10,20,40,80,...
[tex]a_1=5,a_2=10,a_3=20[/tex]
[tex]\frac{a_2}{a_1}=\frac{10}{2}=2[/tex]
[tex]\frac{a_3}{a_2}=\frac{20}{10}=2[/tex]
The ratio of two consecutive terms is equal. Therefore, it forms geometric sequence.
Common ratio, r=2
a=5
[tex]a_n=a r^{n-1}[/tex]
[tex]a_6=ar^5=5(2)^5=160[/tex]
[tex]a_7=ar^6=5(2^6)=320[/tex]
[tex]a_8=ar^7=5(2^7)=640[/tex]
Sequence C:2,5,10,17,26,..
a1=2
[tex]a_2=5=2+3=a_1+3[/tex]
[tex]a_3=10=5+5=a_2+5[/tex]
[tex]a_4=17=10+7=a_3+7[/tex]
[tex]a_5=26=17+9=a_4+9[/tex]
From the following pattern
We can get
[tex]a_6=a_5+11=26+11=37[/tex]
[tex]a_7=a_6+13=37+13=50[/tex]
[tex]a_8=a_7+15=50+15=65[/tex]