One of the emission spectral lines for Be31 has a wavelength of 253.4 nm for an electronic transition that begins in the state with n 5 5. What is the principal quantum number of the lower-energy state corresponding to this emission? (Hint: The Bohr model can be applied to one-electron ions. Don’t forget the Z factor: Z 5 nuclear charge 5 atomic number.)

Respuesta :

Explanation:

The given data is as follows.

   [tex]\lambda[/tex] = 253.4 nm = [tex]253.4 \times 10^{-9}m[/tex]      (as 1 nm = [tex]10^{-9}[/tex])

            [tex]n_{1}[/tex] = 5,        [tex]n_{2}[/tex] = ?

Relation between energy and wavelength is as follows.

                    E = [tex]\frac{hc}{\lambda}[/tex]

                       = [tex]\frac{6.626 \times 10^{-34} Js \times 3 \times 10^{8} m/s}{253.4 \times 10^{-9}}[/tex]

                       = [tex]0.0784 \times 10^{-17}[/tex] J

                       = [tex]7.84 \times 10^{-19} J[/tex]

Hence, energy released is [tex]7.84 \times 10^{-19} J[/tex].

Also, we known that change in energy will be as follows.

     [tex]\Delta E = -2.178 \times (Z)^{2}[\frac{1}{n^{2}_{2}} - \frac{1}{n^{2}_{1}}[/tex]

where, Z = atomic number of the given element

 [tex]7.84 \times 10^{-19} J = -2.178 \times (4)^{2}[\frac{1}{n^{2}_{2}} - \frac{1}{(5)^{2}}[/tex]

    [tex]\frac{7.84 \times 10^{-19} J}{34.848} = \frac{1}{n^{2}_{2}} - \frac{1}{(5)^{2}}[/tex]

      0.02 + 0.04 = [tex]\frac{1}{n^{2}_{1}}[/tex]

                      [tex]n_{1}[/tex] = [tex]\sqrt{\frac{1}{0.06}}[/tex]

                          = 4

Thus, we can conclude that the principal quantum number of the lower-energy state corresponding to this emission is n = 4.

ACCESS MORE