Respuesta :
Explanation:
The given data is as follows.
[tex]\lambda[/tex] = 253.4 nm = [tex]253.4 \times 10^{-9}m[/tex] (as 1 nm = [tex]10^{-9}[/tex])
[tex]n_{1}[/tex] = 5, [tex]n_{2}[/tex] = ?
Relation between energy and wavelength is as follows.
E = [tex]\frac{hc}{\lambda}[/tex]
= [tex]\frac{6.626 \times 10^{-34} Js \times 3 \times 10^{8} m/s}{253.4 \times 10^{-9}}[/tex]
= [tex]0.0784 \times 10^{-17}[/tex] J
= [tex]7.84 \times 10^{-19} J[/tex]
Hence, energy released is [tex]7.84 \times 10^{-19} J[/tex].
Also, we known that change in energy will be as follows.
[tex]\Delta E = -2.178 \times (Z)^{2}[\frac{1}{n^{2}_{2}} - \frac{1}{n^{2}_{1}}[/tex]
where, Z = atomic number of the given element
[tex]7.84 \times 10^{-19} J = -2.178 \times (4)^{2}[\frac{1}{n^{2}_{2}} - \frac{1}{(5)^{2}}[/tex]
[tex]\frac{7.84 \times 10^{-19} J}{34.848} = \frac{1}{n^{2}_{2}} - \frac{1}{(5)^{2}}[/tex]
0.02 + 0.04 = [tex]\frac{1}{n^{2}_{1}}[/tex]
[tex]n_{1}[/tex] = [tex]\sqrt{\frac{1}{0.06}}[/tex]
= 4
Thus, we can conclude that the principal quantum number of the lower-energy state corresponding to this emission is n = 4.