Answer:
∴ The angle of the vector is 49.4°.
Explanation:
Given:
For a vector:
[tex]x-component\rightarrow 12[/tex]
[tex]y-component\rightarrow 14[/tex]
The tangent of angle of a vector is given by:
[tex]\tan \theta=\frac{y}{x}[/tex]
where [tex]\theta[/tex] represents the angle of the vector, [tex]y[/tex] represents the length of [tex]y-component[/tex] and [tex]x[/tex] represents the length of [tex]x-component[/tex].
Plugging in the given values to get the angle of vector [tex]\theta[/tex].
[tex]\tan \theta=\frac{14}{12}[/tex]
Taking [tex]\tan^{-1}[/tex] both sides to get [tex]\theta[/tex]
[tex]\theta=\tan^{-1}\frac{14}{12}[/tex]
[tex]\theta=49.4\°[/tex]
∴ The angle of the vector is 49.4°.