Respuesta :
Answer with Explanation:
We are given that mass of block=0.0600 kg
Initial speed of block=0.63 m/s
Distance of block from the hole when the block is revolved=0.47 m
Final speed=3.29 m/s
Distance of block from the hole when the block is revolved=[tex]9\times 10^{-2}m[/tex]
a.We have to find the tension in the cord in the original situation when the block has speed =[tex]v_0=0.63 m/s[/tex]
[tex]T=\frac{mv^2}{r}[/tex]
Because tension is equal to centripetal force
Substitute the values
[tex]T=\frac{0.06\times (0.63)^2}{0.47}=0.05 N[/tex]
b.[tex]v=3.29 m/s[/tex]
[tex]T=\frac{mv^2}{r}=\frac{0.06\times (3.29)^2}{0.09}=7.2 N[/tex]
c.Work don=Final K.E-Initial K.E
[tex]W=\frac{1}{2}m(v^2-v^2_0)[/tex]
[tex]W=\frac{1}{2}(0.06)((3.29)^2-(0.63)^2)[/tex]
[tex]W=0.31 J[/tex]
