Answer: [tex]0.000085\leq\sigma^2\leq0.000271[/tex]
Step-by-step explanation:
Given : Sample size : n= 25
Degree of freedom : n-1 = 24
Significance for 95% confidence = [tex]\alpha=0.05[/tex]
Sample variance : [tex]s^2=0.00014[/tex]
We assume that the population of all cylindrical engine part outside diameters that would be produced by the new machine is normally distributed
Using chi-square distribution table , Critical values are:
[tex]\chi^2_{{n-1,\alpha/2}}=\chi^2_{24,\ 0.025}=39.364\\\\\chi^2_{{n-1,1-\alpha/2}}=\chi^2_{24,\ 0.975}=12.401[/tex]
Confidence interval for variance is given by:-
[tex]\dfrac{(n-1)s^2}{\chi^2_{{n-1,\alpha/2}}}\leq \sigma^2\leq\dfrac{(n-1)s^2}{\chi^2_{{n-1,1-\alpha/2}}}\\\\\\=\dfrac{(24)(0.00014)}{39.364}\leq \sigma^2\leq\dfrac{(24)(0.00014)}{12.401}\\\\\\\approx0.000085\leq\sigma^2\leq0.000271[/tex]
∴ 95% confidence interval for variance :
[tex]0.000085\leq\sigma^2\leq0.000271[/tex]