Answer:
t = 56.6 min
Explanation:
Fick's second law is used to calculate time required for diffusion
[tex]\frac{C_s - C_x}{C_s - C_o} = erf( \frac{x}{2\sqrt{Dt}})[/tex]
where
[tex]C_s [/tex]= 1.15%
[tex]C_o[/tex] = 0.18%
[tex]C_x [/tex]= 0.35%
x = 0.40 mm = 0.0004 n
[tex]D_{927^O\ C } = 1.28\times 10^{11} m^2/s[/tex]
therefore we ahave
[tex]\frac{1.15-0.35}{1.15- 0.18} = erf[\frac{4\times 10^{-4}}{2\sqrt{1.28\times 10^{-11} t}}][/tex]
[tex]0.8247 = erf [\frac{55.90}{\sqrt{t}}] = erf z[/tex]
from error function table we hvae following result
for erf z z
0.8209 0.95
0.8247 x
0.8427 1
therefore
[tex]\frac{0.8247 - 0.8209}{0.8427 - 0.8209} = \frac{x - 0.95}{1 - 0.95}[/tex]
x = 0.959
thus
[tex]z = \frac{55.90}{\sqrt{t}}[/tex]
[tex]0.959 = \frac{55.90}{\sqrt{t}}[/tex]
t = 56.6 min