Explanation:
[tex]2A\rightarrow products[/tex]
According to mass action,
[tex]\textrm{rate}=-\dfrac{\Delta[\textrm A]}{2\Delta t}=k[\textrm A]^2[/tex]
Where, k is the rate constant
So,
[tex]\dfrac{d[A]}{dt}=-k[A]^2[/tex]
Integrating and applying limits,
[tex]\int_{[A_t]}^{[A_0]}\frac{d[A]}{[A]^2}=-\int_{0}^{t}kdt[/tex]
we get:
[tex]\dfrac{1}{[A]} = \dfrac{1}{[A]_0}+kt[/tex]
Where,
[tex][A_t][/tex] is the concentration at time t
[tex][A_0][/tex] is the initial concentration
Half life is the time when the concentration reduced to half.
So, [tex][A_t]=\frac{1}{2}\times [A_0][/tex]
Applying in the equation as:
[tex]t_{1/2}=\dfrac{1}{k[A_o]}[/tex]