Answer:
E=-1.51 eV.
[tex]L=\hbar\sqrt{2}[/tex]
Explanation:
The nth level energy of a hydrogen atom is defined by the formula,
[tex]E_{n}=-\frac{13.6}{n^{2} }[/tex]
Given in the question, the hydrogen atom is in the 3p state.
Then energy of n=3 state is,
[tex]E_{n}=-\frac{13.6}{(3)^{2} }\\E_{n}=-1.51eV[/tex]
Therefore, energy of the hydrogen atom in the 3p state is -1.51 eV.
Now, the value of L can be calculated as,
[tex]L=\hbar\sqrt{l(l+1)}[/tex]
For 3p state, l=1
[tex]L=\hbar\sqrt{1(1+1)}\\L=\hbar\sqrt{2}[/tex]
Therefore, the value of L of a hydrogen atom in 3p state is [tex]L=\hbar\sqrt{2}[/tex].